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THE FIFTEENTH
INTERNATIONAL SYMPOSIUM ON
MATHEMATICAL PROGRAMMING
14-19 August 1994

by K.G. Murty

This symposium, sponsored by the Mathematical Pro-
gramming Society (MPS), was held on the Central Cam-
pus of the University of Michigan (UM), Ann Arbor. It
was well attended with over 1070 registrations from all
over the world. There were 1050 talks in all, organized
into 22 parallel streams throughout the week.

The truly international character of the symposium was
helped by generous grants from the International Science
Foundation that made it possible for many participants
from countries of the former Soviet Union to come, and
by a grant from the US National Science Foundation,
which the organizers were able to use to subsidize partly
the costs of participants from dollar deficient countries.
Grants from General Electric Lighting and Philips Dis-
play Components also enabled six of the USA Mathe-
matics Olympiad finalists to attend, helped support other
attendees, and host receptions.

The symposium was inaugurated on Sunday evening,
14 August, with an invocation specially composed by the
Pulitzer Prize winning composer William Bolcom. His
composition, Haunted Laybrinth, based on B.C. Eaves’
ghost story interpretation of complementary pivot algo-
rithms for the linear complementarity problem (LCP),
was set to the path of iterates for an LCP of order 5 from
a paper of K.G. Murty. Welcoming addresses were given
by I.B. Sheldon, Mayor of Ann Arbor; and P.M. Banks,
Dean of the College of Engineering, UM. The inaugural
address was given by J.K. Lenstra, Chairman of MPS.

At the opening session on Monday, 15 August, prizes
were awarded. There was a special honorary prize
awarded to George B. Dantzig, the father of mathemati-
cal programming, to felicitate his 80th birthday later this
year. The George B. Dantzig prize sponsored by MPS
and SIAM for original research having a major impact
on mathematical programming, was awarded jointly to
C. Lemaréchal and R.J-B. Wets. The D. Ray Fulkerson
prize, sponsored by MPS and AMS for an outstanding pa-
per in discrete mathematics, was awarded to L.J. Billera,
G. Kalai, and the group consisting of N. Robertson, P.
Seymour and R. Thomas. The Beale-Orchard-Hays prize,
sponsored by MPS for excellence in computational mathe-
matical programming, was awarded jointly to A.R. Conn,

N.I.LM. Gould, and Ph.L. Toint. The finalists of the A. W.
Tucker prize, sponsored by MPS for an outstanding paper
by a student, were announced to be D. den Hertog, J. Liu,
and D.P. Williamson. And after the A.W. Tucker prize
session held on Tuesday, 16 August, D.P. Williamson was
selected as the prize winner.

We should also mention special sessions that included
one organized by J.S. Pang dedicated to R.W. Cottle on
the occasion of his 60th brithday, one on integer pro-
gramming and economics organized by R. Gomory and
H. Scarf, and several student sessions.

The symposium banquet held on Wednesday evening,
17 August, at Greenfield Village was attended by 360
people.

There were 23 tutorial talks on recent advances in var-
ious branches of mathematical programming. All these
talks were outstanding and had very large audiences.
Summary articles of most of these tutorial talks were
edited by J.R. Birge and K.G. Murty into a 308 page
book, Mathematical Programming: State of the Art 1994,
which was distributed to all the registered participants.
Others who want a copy of this book can order it by
sending a $20 check, endorsed to the University of Michi-
gan, to Ms. Ruby Sowards, IOE Department, Univer-
sity of Michigan, Ann Arbor, MI 48109-2117, USA. For
an additional $5 they can also order the 240 page book
of abstracts of all the talks, an updated list of program
changes, and a full roster with addresses of all partici-
pants.

Of course, each talk at the symposium presented some-
thing new, but it has become a tradition with Mathemat-
ical Programming Symposia to have talks on some major
new breakthroughs. We will briefly summarize some of
the major new breakthroughs presented at this sympo-
sium.

The new subjects on which there were several talks
and tutorials at this symposium are positive-definite and
semidefinite programming. Beginning with a technique
used by L. Lovasz to establish that the Shanon capacity
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of Cs is /5, these subjects have mushroomed very re-
cently into major research areas in mathematical pro-
gramming through the vehicle of interior point methods.
The applications of semidefinite programming in solving
pure 0-1 integer problems and combinatorial optimiza-
tion problems is attracting much interest. There were also
many talks on interior point methods for linear, quadratic
and convex programming problems, and the LCP.

The classical Newton’s method figured very promi-
nently in many talks, including a tutorial in which S.
Smale summarized his recent proof that Newton’s method
solves polynomial systems approximately, on the average,
in polynomial time.

Large scale computation was the focus of many talks,
including the plenary address of W.J. Cook, and those of
his co-authors, V. Chvatal and D. Applegate, in which
the solution of a 7397 city traveling salesman problem
using recent developments in polyhedral combinatorics,
was described.

The breakthrough work on balanced 0-1 matrices dis-
cussed in the previous symposium, has been extended re-
cently to cover balanced 0, +1 matrices. This had been
the subject of a tutorial and some talks.

Of course, in this brief article it is not possible to de-
scribe all the new developments discussed at the sympo-
sium, but the interested reader is invited to review the
book of abstracts.
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CHAIRMAN’S COLUMN
by A.R. Conn

I am feeling remarkably mellow these days. Maybe the
aftermath of the Ann Arbor meeting or the fact that au-
tumn can be such a wonderful season, especially in the
NorthEast.

I hope that some of you felt that the Ann Arbor busi-
ness meeting of our activity group was worth attending.
I certainly thought it was a very useful meeting. I was
surprised to discover how unpopular some of my own bi-
ases really are — no wonder I have a tendancy to be
undemocratic. For those of you that are interested, but
were unable to attend, a (very brief) modified summary
follows.

We have to have a slate of new officers and I asked for
suggestions from the membership.

John Dennis, the founding editor, has now passed over
the editorship of the STAM Journal on Optimization
to Michael Overton and both spoke at the meeting.

SIAG/OPT Views-and-News

We had an interesting discussion about the forthcom-
ing SIAM Optimization meeting (Victoria, Canada,
May 20-22, 1996) and again I urge the membership
to let us know what they want. We want to make
this our best ever. Certainly the organisers of the
Mathematical Programming Symposium put a great
deal of effort into the Ann Arbor meeting. Some
obstacles were very difficult to accommodate (for ex-
ample, the incredible number of talks delivered) but
I thought the venue was both excellent and relatively
inexpensive.

Another issue raised at the business meeting was our ac-
tivity group’s prize (to be awarded for the first time
in Victoria). The award is to be given to the au-
thor(s) of the most outstanding paper, as determined
by the prize committee, on a topic in optimization
published in English in a peer-reviewed journal. It
is imperative that we obtain a reasonable number of
nominations, so once again, members, we need your
active support.

In my first newsletter I tried to argue forcefully why
our colleagues should join STAM, our activity group, sub-
scribe to the journal and encourage their colleagues to do
likewise. Once again, the time for renewing memberships
is around the corner. To quote myself “Without these
societies we would not have the journals and major meet-
ings that are so essential for the well-being of our sub-
ject. Moreover, the societies act as significant voices for
our interests with respect to governments, industry and
universities. I believe they really do an excellent job”.

I recently came across an article that I found both
provocative and interesting. It was entitled, “Mathemat-
ics in Canada:50 years later” by Jonathan M. Borwein
and Kenneth R. Davidson and is to be published in a
special volume celebrating the 50" anniversary of the
Canadian Mathematics Society. Amongst its main theses
is the opinion that NSERC (Canada’s closest equivalent
to NSF), although currently under significant financial
and political pressures, is unequaled anywhere as a means
of appropriately distributing research funds. One of the
most significant differences from the American model is
that NSERC does not pay salaries to investigators. They
argue that one consequence of this is that NSERC is able
to be much more flexible in the level of funding awarded
to a given researcher and simultaneously tolerates gener-
ous funding of a few and modest funding of many, if not
most, genuinely active researchers. They claim that in
contrast to Americans or western Europeans, Canadians
have a much higher level of autonomy and discretion in
how they spend their monies. They are judged by the
calibre of the research and not by unreasonable fidelity
to a research program (or project) and budget produced
several years earlier.
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Another significant difference is that there is no ‘over-
head’ component. Thus, each individual mathematician
actually sees almost every NSERC grant dollar.

They also raise the issue of the education of mathemati-
cians and their prospects in our society. One point they
make is that North-American school (i.e. pre-university)
students do poorly relative to other western countries but
‘strikingly, these same students ranked very high in their
perception of their mathematical performance’. They go
on to remark that ‘It is a great irony that our society uni-
formly celebrates elite performance in sports and music
while rejecting streaming in the classroom. Who seriously
argues that athletes of all ability levels should train to-
gether? Or that potential concert pianists need only the
same training as a school choir?’

Finally, I would like to mention their comments on
postgraduate education and jobs. They claim that “until
recently, the training of graduate students has been pri-
marily a way of perpetuating ourselves. Now, however,
even very good students are no longer getting academic
jobs. Current estimates are that North American uni-
versities can only absorb about one sixth of the present
record number of doctorates (1,200 per annum). There
is a similarly sobering estimate of industry’s long-term
desire for Ph.D.s”.

I recommend that you take the time to read the original
article. It raises many issues that are important to our
profession and although you may be familar with many
of them, they are worth reiterating.

As always, I welcome your opinion. My email address
is arconn@watson.ibm.com
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FORUM ESSAYS

THE TWO FACES OF THE LINEAR
COMPLEMENTARITY PROBLEM

by Michael J. Todd !

1. TWO CLASSES OF LCP

The linear complementarity problem (LCP) is said to
be a unifying problem for convex quadratic programming
(including linear programming), equilibrium computation
in bimatrix games, and certain problems in engineering.
Here I wish to argue that it may be more helpful to think
of it as a “duifying” problem: that there are in fact two
classes of LCP that should be distinguished by the ap-
plication in which they arise, by the matrix classes to
which the corresponding matrices belong, and by the al-
gorithmic approach that should be considered. Two re-
cent books that discuss different algorithmic approaches
to the LCP are Cottle, Pang, and Stone [1], which treats
pivoting methods in great detail, and Kojima, Megiddo,
Noma, and Yoshise [4], which covers interior-point meth-
ods.

Given a real n x n matrix M and a real n-vector ¢, the
LCP (M, q) is to find, if possible, n-vectors z and y such
that

y = Mz+gq, (1)
z > 0, y >0, (2)
and either
2Ty=0 (3)
or

(4)

Of course, given that (2) holds, (3) and (4) are “really”
equivalent — that is, they are equivalent for vectors z and
y of real numbers. We argue that they may not be “really
equivalent,” i.e., equivalent as formulations of real-world
problems.

Let us elucidate this point in two ways. First, 2Ty =
>_; %j¥; in (3) only makes sense if each product z;y; is
measured in the same units. (This argument also goes by
the name of dimensional analysis.) For example, in the
LCP arising from a linear programming problem, each
product z;y; has the units of the objective function; in

szJ:O) jzla"')n'

1School of Operations Research and Industrial Engineering, Cor-
nell University, Ithaca, NY 14853. e-mail: miketodd@cs.cornell.edu
Research was supported in part by NSF, AFOSR, and ONR through
NSF grant DMS-8920550.



a standard product mix instance, either z; is an amount
of a certain product and y; has the units of the profit
contribution of that product, or «; is the shadow price
of a scarce resource and y; has the units of an amount
of that resource. Similarly, in the LCP from a bimatrix
game, each z; has the units of a reciprocal payoff, and
each y; is dimensionless. By contrast, (4) only requires
that at least one of z; and y; be zero for each j, with no
necessity that all z;y;’s be measured in the same units.

A more abstract way to view the same distinction is
as follows. We can imagine z and y as lying in abstract
n-dimensional vector spaces X and Y respectively. Then
(1) says that there is an affine mapping between X and Y,
and y is the image of £ under this mapping. Requirement
(2) implies that there are distinguished bases in X and
Y, determining positive cones in which £ and y must lie.
However, (4) makes sense even if these bases are defined
only up to positive scalar multiples. (The components z;
are then the components of z in the X basis, and similarly
for y.) On the other hand, (3) requires there to be a
scalar product defined on X x Y, or equivalently that Y
is (isomorphic to) the dual space X* of X. (In this case,
2Ty is better written < z,y >.) The distinguished bases
should then be selected to be dual bases, so that a change
in scale for the basis in X necessitates a corresponding
change in scale for that of Y. (This abstract viewpoint
was used to illustrate quasi-Newton updates in [6]; see
also the appendix of Gilbert and Lemarechal [3].)

It appears that almost all applications of which the au-
thor is aware fall into the latter class, where the scalar
product z7y makes sense — we call these dual-space ap-
plications. Certainly this is true for applications aris-
ing from optimization problems or bimatrix games. In
many engineering applications, the z variables are dis-
placements and the y variables stresses, so again all z;y;’s
have the same units.

2. DTAGONAL SCALING

Let D and E be n x n scaling matrices; that is, diagonal
matrices with positive diagonal entries. Then the affine
scaling (or change of units) givenby z — z := D~1z, y —
§ := E~ly transforms (1)-(2) to

g = Mi+yq, (5)
z > 0, y 20, (6)

where
M:=EMD, 7:=E"1q. (M

In the new variables, (4) is equivalent to
(8)
but z7Tj remains equal to 2Ty only if E-! = D, so that

M := DMD, q := Dq. (9)
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Hence, for dual-space applications, matrix classes and
algorithms should ideally be invariant with respect to
changes in scale leading to new data given by (9). In
more general applications, we might ask that the invari-
ance be with respect to more general changes as in (7).

3. MATRIX CLASSES

Much research in linear complementarity theory stud-
ies various matrix classes; certain properties of the LCP
(M, q) or of algorithms applied to it hold for M belonging
to certain of these classes. Thus (M, ¢q) has a unique solu-
tion for each ¢ if and only if M lies in P, the class of square
matrices with all principal minors positive. Similarly,
Lemke’s algorithm will process the LCP (M, q) (find a
solution or show none exists) for M positive semi-definite
(in linear complementarity theory, this is not meant to im-
ply that M is symmetric, only that its symmetric part is
positive semi-definite), or more generally copositive-plus.

It is natural to ask for each such matrix class whether
it is invariant under the general scaling of (7), or the more
restrictive scaling of (9). It seems that almost all classes
considered in the literature are in fact invariant under
the more general scaling. Thus P-matrices, as well as
adequate, sufficient, semi-monotone matrices, and a host
of other classes known by various letters of the alphabet,
allow arbitrary left and right diagonal scaling. The LCP
itself, in the form of (1),(2), and (4), is invariant under
such scaling and so questions of existence and uniqueness
naturally exhibit this invariance.

The “only” classes of which I am aware for which invari-
ance is only with respect to the more restrictive scaling (9)
are those of symmetric, positive semi-definite, and copos-
itive matrices and their variants (skew-symmetric, bi-
symmetric, positive definite, copositive-plus, etc.). The
reason for the quotes is that these are perhaps the most
important classes in applications; in particular, positive
semi-definite matrices recur frequently.

4. ALGORITHMS

Here T certainly do not want to get into detailed de-
scriptions of particular algorithms. However, I want to
distinguish two classes of algorithms: those that rely on
pivoting and combinatorial methods (here I include it-
erative methods that use individual components of vec-
tors like SOR), discussed in detail in [1]; and interior-
point methods, many of which approximately follow the
so-called central path — see [4].

Algorithms in the first class, like Cottle and Dantzig’s
principal pivoting method and Lemke’s method, are in-
variant under the more general scaling (7). (The artificial
vector chosen in Lemke’s algorithm must also be scaled
by E—!, and if the algorithm searches for, say, a most neg-
ative component of y at some point, this must be relative
to some vector of positive reference values, also similarly
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scaled.)
On the other hand, interior-point methods often try to
generate iterates that approximately satisfy

y = Mz+y, (10)
Toy = e, (11)
z>0 , y>0, (12)

where e denotes a vector of ones in ®"*, and zoy the vector
of products z;y;. Here all the componentwise products
are being set equal, so clearly such algorithms assume that
they have a dual-space application. (The same holds for
potential reduction methods, which use a merit function
depending on zTy.) By the same token, these methods
are only invariant under the more restrictive scaling (9).

5. APPROPRIATE SELECTION OF ALGO-
RITHMS

On the basis of the previous discussion, I would like
to argue that interior-point methods are only suitable for
dual-space applications. If they are applied to abstract
problems (M, q), then they are more likely to be success-
ful if the matrix M belongs to one of the more restric-
tive classes that are only invariant under the scaling (9).
Indeed, the vast majority of such algorithms have been
applied to LCP’s with positive semi-definite matrices. In
the few cases where such methods have been applied to
more general matrix classes (mostly described in [4]), the
results have been far less satisfactory: global convergence
can be proved for column sufficient matrices, but no es-
timate of computational complexity is known. Similarly,
the estimate of the work required to solve an LCP with
M a P-matrix is rather complicated and certainly does
not lead to a polynomial time bound [5].

One of the most important outstanding questions in
LCP theory is indeed whether a polynomial algorithm
exists in the P-matrix case. For the reasons above, I am
skeptical as to the possibility of an interior-point method
providing an answer to this conundrum.

An intriguing matrix class introduced by Kojima,
Megiddo, Noma, and Yoshise [4] tends to blur the dis-
tinction I have been making. We say M lies in P,(x) for
some nonnegative k if for every z,

(14 4x) E z;(Mz); + E zi(Mz); >0,

I+() I-()

where I (z) := {i : z;(Mz); > 0} and I_(z) := {i :
zi{(Mz); < 0}. Then P, is the union of all such P,(«)’s.
(It has recently been shown that all P,-matrices are suf-
ficient; see Guu and Cottle [2].) Clearly, each P,(k) is
only invariant under the restrictive scaling (9) (note that
P,(0) is just the set of positive semi-definite matrices),
but Kojima et al. show that P, is invariant under the
more general scaling (7). They give a polynomial algo-
rithm (with a bound depending polynomially on &) for

LCP’s with M € P.(k), but only a globally convergent
algorithm if M € P, (the latter class includes P).

6. CAVEAT

I have been rather dogmatic above in distinguishing two
classes of LCP and arguing that algorithms for the more
restrictive class should not be applied in the more general
setting. Here I want to soften this argument somewhat.
Any application can be transformed into a dual-space ap-
plication by making it dimensionless. Thus, given an arbi-
trary LCP (M, q) and positive vectors £ and ¢, the equiv-
alent LCP (M, q) given by (7) will be dimensionless if we
choose D := diag(z) and E := diag(§). This assumes
that any change in scale is reflected in the scaling vectors
& and g. In the case of an interior-point method, a similar
effect results if e in (11) is replaced by # o g, the vector of
componentwise products of the “reference vectors.” (Un-
fortunately, algorithms using such a perturbed (11) have
worse complexity, roughly by the amount that % o § dif-
fers from a multiple of e.) Note that many interior-point
algorithms assume that such a pair of vectors (even a pair
also satisfying (1)) is available.
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CONTINUOUS-TIME
LINEAR PROGRAMMING

by Malcolm C. Pullan?!

1. INTRODUCTION

Time is an important element in many areas of opti-
mization. This is particularly true when networks are in-
volved, for example, in transportation, scheduling or rout-
ing. One approach to dealing with optimization problems
over time is the technique of “Dynamic Programming” in-
troduced by Bellman [7] in his well-known book of 1957.
However, many people are not aware that two chapters
of this book are also devoted to a production planning
problem which Bellman called the “Bottleneck Problem”.
This problem is an extension of the standard linear pro-
gram over time in that the costs, right-hand sides and
variables are all functions of time instead of just vectors
in R". Consequently Bellman hoped that an extension
of the simplex algorithm could be readily obtained for
its solution. However the problem is much more difficult
than he first thought. Though a small example problem
is solved in {7], Bellman wrote: “The analysis is decidedly
difficult and it cannot be said that these problems have
in any sense been tamed”.

The bottleneck problem, or continuous linear program
(CLP) as it is now known, emerged at a time when many
other optimization problems were introduced. It is per-
haps fair to say that the ones we are most familiar with
today are those where significant progress was made on an
algorithm for their solution, rather than those that serve
as the best models for real problems. Unfortunately no
algorithm was developed for CLP. As a result, it is not
very well-known, even though it can be an effective model
in many situations.

The absence of an algorithm for CLP is in spite of a
considerable effort made by a number of authors, such
as Lehman [11], Tyndall [18], Levinson [12], Grinold [10],
Perold [13] and Anstreicher [6]. It is worth noting that a
large part of this research on CLP has been confined to
challenging (and often unpublished) Ph.D. theses. Upon
completion, most researchers have decided to work on
something more productive (the author recalls Anstre-
icher saying just that, despite CLP being a “great thesis
topic”). Both Perold and Anstreicher did make consider-
able progress towards an algorithm, but their work is still
a long way from being able to solve real problems. This
put the final nail in the coffin and the prevalent feeling
now is that CLP in its full generality is too hard to solve.

In 1978, Anderson [1] introduced a subclass of CLP
called “Separated Continuous Linear Programs” (the
term “separated” referring to the separation of integral

13t. John’s College, Cambridge University, Cambridge CB2 1TP,
United Kingdom. e-mail: mcpl11@phx.cam.ac.uk
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and instantaneous constraints). The given problem data
consist of a bounded measurable cost c¢(t) (vector val-
ued, along with all the problem data), two types of right-
hand sides, one, b(t), bounded measurable and the other,
a(t), absolutely continuous. The problem also requires
two (general) matrices G and H. The variables consist
of a vector of bounded measurable functions, z(t), along
with two slacks y(t) and z(t). The separated continuous
linear program (SCLP) is now written as

T
SCLP: minimize ] e(t)Tx(t) dt
0

subject to /t Gz(s)ds +y(t) = a(t), (1)
0

Hz(t) + z(t) = b(t),
z(t),y(t),z(t) 2 0, te€[0,T).

This is an example of an infinite-dimensional linear pro-
gram, as there are an infinite number of variables (z(t),
y(t) and 2(t) for each t) and an infinite number of con-
straints (several for each time t).

The motivation for the introduction of SCLP by An-
derson was to model large job-shop scheduling problems
where there are many similar items to process. It then
becomes convenient to treat the problem as one of rates
of production of different commodities, rather than one
of production of individual items. In fact, SCLP serves
as a useful model for a variety of time-dependent (that is,
dynamic) network problems (single- or multi-commodity,
with or without side constraints) where the variables are
rates of flow, the costs and demands are time varying and
storage is permitted at the nodes. For instance, to model
a single-commodity dynamic network program we could
set G to be a node-arc incidence matrix and a(t) to be the
vector of total supply up to time ¢ in each of the nodes.
Then z(t) could represent the rate of flow in the arcs and
y(t) the vector of node storages. The matrix H can then
be used to represent any side constraints such as upper
bounds on the rates of flow (see Anderson and Philpott [4]
for a discussion of this model). Tt is also worth mentioning
that it is possible to include storage costs in the model,
however these can be removed by substituting (1) into
the objective function and integrating by parts.

Examples of dynamic network problems are numerous
and include water flow management (where we could be
concerned with rates of flow along pipes and storage at
reservoirs) or the routing of traffic through a network with
the minimum of delay. It is also possible that large time-
dependent discrete network problems, such as ones of
transportation involving a large number of similar small
items, may be effectively modelled using SCLP. This
would be done by changing the problem from the flow
of individual items into one of rates of flow, similarly to
the modelling of job-shop scheduling problems in Ander-
son [1].
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Unfortunately, as with the more general CLP, little
progress was made on the solution of SCLP in the years
following its introduction. Thus SCLP has never at-
tracted much attention despite its many possible appli-
cations. However, recent work on SCLP has resulted in
an algorithm for the solution of SCLP under certain as-
sumptions on the problem data. This raises the possi-
bility of SCLP being a useful model for various practical
problems. Evolving from the algorithm has also been a
large body of results that at last reveal some of the struc-
ture of the problem. These results are useful for further
algorithmic development but are also interesting in their
own right. For instance, the results serve to highlight
the similarities between SCLP and its finite-dimensional
counter-part. The purpose of this article is to outline
these advances and convince the reader of the usefulness
of SCLP as a model for various problems.

Before doing this we should answer the following in-
evitable question. Why not just discretize the problem
and solve that? For the single-commodity dynamic net-
work program this idea goes back as far as Ford and Fulk-
erson [9]. There are several reasons why this is not desir-
able and we list some of them below.

o It seems sensible, since time is continuous, to allow
decisions to be made at any arbitrary time rather
than fixed predetermined times.

e An accurate answer may require a large discretiza-
tion and lots of computation.

e More fundamentally, it is difficult to determine the
accuracy of a solution from a discretization.

¢ In general, solving large time-expansions is numeri-
cally difficult.

e There may be a simple answer but the discretization
may not show it,

e Important theoretical properties, e.g. sensitivity,
may be obscured.

2. RECENT RESULTS ON SCLP

We now give a statement of the main results that have
been obtained for SCLP. From a theoretical point of
view they are quite complete and are certainly more gen-
eral than similar results obtained for any other class of
continuous linear programs. The first result is a charac-
terisation of the extreme points of the feasible region (or
basic feasible solutions in normal linear programming ter-
minology). This result is not recent (relatively speaking)
but may be found in Anderson et al. [3].

Theorem 1 A feasible solution, w(t)T = (z(t)7,
y()T, 2(t)T), for SCLP is basic if and only if the columns

of
G I 0
H oI}

corresponding to the support of w(t) (that is, ¢ such that
wi(t) > 0) are linearly independent for almost all t €
[0, 7).

As with ordinary linear programming it is not difficult
to establish that a non-empty and bounded feasible re-
gion ensures the existence of an optimal basic solution
for SCLP. However, if we are to solve SCLP using nu-
merical techniques we need more than this. We need to
have an optimal solution with some finite structure. The
next result does just that by stating that if the problem
data are “nice”, except at a finite number of points, then
so is the optimal solution. This result may be found in
Pullan [15]. We use the term “piecewise” to mean only a
finite number of pieces.

Theorem 2 Suppose that the feasible region for SCLP
15 non-emply and bounded and that all the problem data
a(t), b(t) and c(t) are piecewise analytic (with a(t) con-
tinuous). Then SCLP has an optimal basic solution that
is piecewtse analytic. If a(t) and b(t) are also piecewise
polynomials of degree n+1 and n respectively then SCLP
has an optimal basic solution with z(t) piecewise polyno-
mial of degree n.

|

Counter-examples are easy to construct if the assump-
tions of analyticity are weakened.

Substantial progress has also been made in the area of
duality. It is here that the similarities between SCLP and
ordinary linear programming can be seen most clearly. In
finite dimensions most duality results for non-linear pro-
gramming require some constraint qualifications whereas
such restrictions are not required in linear program-
ming. In infinite-dimensional optimization it seems that
all duality results, both linear and non-linear, have re-
quired some constraint qualifications. Not only that,
but many desirable duality results do not hold, even for
infinite-dimensional linear programming (see Anderson
and Nash [2] for a discussion of this). Recent work on
SCLP has removed these problems by the careful consid-
eration of a new dual. This dual, called SCLP¥, was first
introduced in Pullan [14] and is defined as follows:

SCLP*: maximize / ‘ n(t)Tb(t) dt — / ! dn(t)Ta(t)

subject to c(t) — GTx(t) — HTn(t) > 0,

n(t) < 0, a.e. on [0, T,

7 (t) monotonic increasing and
right continuous on [0, T with
m(T) =0.

Here 7)(t) is a Lebesgue integrable function and w(t)
monotonic increasing means that each component is



monotonic increasing. Weak duality (V[SCLP*] <
V[SCLP), where V[-] denotes the optimal value of the
linear program) is readily proved. Considerably more dif-
ficult is the following strong duality result in Pullan [16].

Theorem 3 Suppose that the feasible region for SCLP
is non-empty and bounded and that all the problem data
a(t), b(t) and c(t) are piecewise analytic (with a(t) con-
tinuous). Then V[SCLP*] = V[SCLP] and both SCLP
and SCLP* have piecewise analytic optimal solutions.

Again counter-examples may be constructed given non-
analyticity.

There are similarities in proof technique between this
result and its equivalent for finite-dimensional linear pro-
gramming. One common way of proving the correspond-
ing result in ordinary linear programming is via the sim-
plex algorithm. The proof of Theorem 3 uses the algo-
rithm for solving SCLP outlined below. Non-linear finite-
dimensional duality results are invariably proved using
analytical means such as separating hyperplanes. Pre-
vious infinite-dimensional duality results, both linear or
non-linear, have also tended to be of this latter form.

3. ALGORITHMIC WORK

The main recent breakthrough in the study of SCLP
has been the development of a numerical algorithm in
Pullan [14] for solving various instances of the problem.
The algorithm is fairly simple, in that it does not require a
sophisticated mathematical theory to understand or use,
and quick implementations require little more than a good
LP code. Numerical results suggest that it is also very
fast. Craddock and Philpott [8] report very encouraging
numerical results using a simplified procedure for single-
commodity dynamic network programs.

The algorithm in [14] is developed for piecewise linear
costs ¢(t), piecewise linear and continuous a(t) and piece-
wise constant b(t). By Theorem 2, such SCLP’s have an
optimal solution with z(t) piecewise constant. The dis-
continuities in the optimal solution can (and do!) occur at
any time and it is the task of the algorithm to find these
times. The algorithm thus works with solutions in which
z(t) is piecewise constant and proceeds by producing new
piecewise constant solutions with improved cost.

Let P = {to,t1,...,tm} be any partition of [0,T] that
contains all the discontinuities of the problem data. A
discretization called AP(P) is then introduced which has
many important properties. First of all it is an ordinary
linear program of the same structure as the particular
underlying SCLP problem. For example, if the SCLP
problem is a single-commodity dynamic network program
then AP(P) will be a single-commodity ordinary network
program. Secondly, suppose we have a piecewise constant
feasible solution z(t) for SCLP whose discontinuities are
in the partition P. Then we may plug the values of z()
at each of the partition points into the discretization and

SIAG/OPT Views-and-News

obtain a feasible solution & for the discretization. More-
over the cost of £ in the discretization agrees with the
cost of #(t) in the original SCLP. Conversely (although
note the difference), suppose we have a feasible solution
z for the discretization. Then we may use the values of
& to construct a piecewise constant feasible solution ()
for SCLP whose discontinuities occur at points in P as
well as the midpoints of the partition, i.e. points of the
form (t;—1 + t;)/2 for some i. This time the costs are in
general different between the two solutions.

Probably the most important result is that the linear
programming dual of AP(P), AP*(P), is a discretiza-
tion of SCLP*, the dual of SCLP. Thus any feasible
solution for AP*(P) may be used to construct a fea-
sible solution for SCLP*. Somewhat surprisingly the
costs of the two solutions agree. Thus by strong duality
for finite-dimensional linear programming, V[AP(P)] =
V[AP*(P)] < V[SCLP*]. We may thus deduce the fol-
lowing:

¢ By weak duality, V[AP(P)] < V[SCLP], i.e. the op-
timal value of AP(P) provides a lower bound on
the optimal value of SCLP. More generally, a lower
bound on the optimal value of AP(P) will provide a
lower bound on the optimal value of SCLP.

o If z(t) is a piecewise constant feasible solution for
SCLP and the corresponding AP(P) solution & men-
tioned above is optimal for AP(P), then z(t) is opti-
mal for SCLP.

This lower bound property is very useful. As seen
above, it provides an optimality test for a SCLP solu-
tion. Another use is that it enables a partition P to be
constructed, before any discretization is solved, so that
AP(P) will generate a feasible SCLP solution whose cost
is within any desired tolerance of the optimal value.

The algorithm presented in Pullan [14] for solving
SCLP uses these properties of the discretization AP{P).
However this does not mean to say that the algorithm is
a discretization method, rather that the properties of the
discretization are used to generate better solutions. We
now summarise the algorithm.

e Start off with a piecewise constant feasible solution
z(t) for SCLP whose discontinuities are in P.

o Generate the corresponding Z feasible for AP(P).

e If & is optimal for AP(P) then stop as z(t) is optimal
for SCLP (see above).

e Otherwise, find z, an improved feasible solution for
AP(P).

e Use this to generate a corresponding Z(t) feasible for

SCLP.
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e “Patch” z(t) and Z(¢) together to obtain an improved
solution for SCLP.

This patching together process is quite simple and in-
volves defining the new solution Z(t) to take the value
z(t) for some t and #(t) for other t. Explicit and simple
formulae are given which ensure that the new solution
obtained is an improved feasible solution for SCLP. This
new solution has different discontinuities to the old so-
lution and we thus obtain a new partition for the next
iteration.

Much numerical work remains to be done to find the
best way for refining the partition obtained for use in the
next iteration. However, even using a simple implemen-
tation the partition generally tends to the discontinuities
in the optimal solution. Thus when solving problems,
partitions are usually kept small and the discretizations
are solved quickly. In the introduction we mentioned that
numerical difficulties often occur when solving large dis-
cretizations. These tend to occur when the optimal solu-
tion is constant over many time intervals in the partition.
The algorithm thus avoids this problem by keeping points
in the partition to a minimum.

As well as numerical fine-tuning, there is also the pos-
sibility of extending the algorithm to include more gen-
eral problem data. This work has begun in Pullan [17],
where the structure of an algorithm for solving SCLP with
general piecewise analytic costs is worked out using the
duality theory in Pullan [16]. This algorithm has many
properties of the simplex algorithm for ordinary linear
programming. It also requires the use of a purification
step, that is, a step to produce a good basic feasible solu-
tion from a given non-basic feasible solution. One possible
purification step is developed in Anderson and Pullan [5].
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MAXIMUM ENTROPY METHODS:
CONVEX ANALYSIS IN ACTION

by Jonathan M. Borwein and Mark A. Limber!

1. INTRODUCTION

Many applied problems can be reduced to the question
of how to “best” solve a (possibly underdetermined) con-
sistent system of linear equations Az = b, where b € IR",
and z lies in some appropriate space. Often, the un-
known, z, most appropriately lives in a function space,
rather than IR™, but by discretization one reduces the
problem to a finite dimensional setting where A is then
a m x n matrix. We believe thal in many cases, il is

1CECM, Simon Fraser University, Burnaby, B.C. V5A 188,
CANADA, e-mail: jborwein@cecm.sfu.ca, malimber@cecm.sfu.ca
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better to address the problem in its function space home,
discretizing only as necessary for computation.

Consider, for example, the problem of extrapolating
an autocorrelation function R(t) given several sample
measurements. It is well known (see e.g. [11]) that the
Fourier transform S(z) of the autocorrelation function is
the power spectrum of the data. Fourier moments of the
power spectrum are the same as samples of the autocor-
relation function, so by computing several values of F(t)
directly from the data, we are in essence computing mo-
ments of S(z). If we compute a finite number of moments
of S, we can then estimate S from these moments, com-
pute more moments from the estimate $ by direct numer-
ical integration, thereby affording an extrapolation of R,
without directly computing R from the potentially noisy
data. Here, as in many situations, the problem is, how
do we eslimate S from a finite number of ils moments?
This is a underdetermined linear inversion problem where
the unknown is most naturally a function, not a vector in
R™.

We describe a maximum entropy approach to solving
an underdetermined system of equations where the un-
known, z, is a function, typically living in a Hilbert space,
or more generally, in a space of functions. This technique
essentially picks a “best” representative from the infinite
set of feasible functions (functions that possess the same
n moments as the sampled function) by minimizing an
integral functional, f, of the unknown. This is a well
known technique in the applied literature. Applications
appear in constrained spline fitting, tomographic recon-
struction algorithms, statistical moment fitting, and time
series analysis. However, often the derivations and math-
ematics are fraught with subtle errors. We will discuss
some of the difficulties inhereni in infinile dimensional
calculus, and provide a simple theoretical algorithm for
correctly deriving maximum entropy-type solutions.

2. ENTROPIES

Let X be our function space, typically the Hilbert space
L2(QY), or the function space L}(f2). For p > 0, we define

Lr(Q) = {a: measurable : /ﬂ|x(t)]”dt < oo} ‘

It is well known that L2(Q) is a Hilbert space with inner
product (z,y) = [, z(t)y(t)dt.

The continuous linear map A : X — IR" is defined by
(Az); = [=z(t)a;(t)dt for i = 1,...,n and a; € X* the
topological dual of X (L? in the Hilbert space case, L™
in the L! case). To pick a solution from the infinity of
possibilities, we define what we mean by “best”. A very
common approach is to pick the solution with minimum
norm, by solving the Gram system AAT ) = b, and the so-
lution is then # = AT X. This solution solves the following
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optimization problem:

min{/ z(t)dt: Az =b :r:EX}.
Q

We generalize this by replacing the norm with a strictly
convex functional f as in

min {f(z) : Az =b, z € X}, (P)
where f is what we call, an eniropy functional f: X —
(—o00,+00]. For this note, we restrict attention to the

case where f is a strictly convex integral functional of the
form

f(z) = /n B(z(t))dt.

The functional f can be include other constraints, in-
cluding nonnegativity, by appropriate use of +c0. For
example,

[ z(t)2dt ifz>0
+o00 else

@)=

is the nonnegatively constrained L2 norm functional, used
in [7].

The two most common choices for f are the Boltzmann-
Shannon entropy popular in image processing [6], f(z) =

zIn[z], and the Burg [5] entropy from time series analy-
sis, f(z) = — [ In[z]. Both implicitly assume that there is
a nonnegativity (positivity in the Burg case) constraint.
There has been much debate about which entropy is best
in which situation, but we do not address that issue here.
See [2,8] for some comparisons.

3. WHAT CAN GO WRONG

For a concrete example, consider the problem of solving
the linear system of equations Az = b, where, b € IR"
and z € L?[0,1]. Assume further that A is a continuous
linear map, so that our system can be represented by
bi = [z(t)a;(t)dt for i = 1,...,n and a; € L%[0,1]. As
L? is infinite dimensional, and IR" is finite dimensional,
the null space of A is infinite dimensional, and thus if
there are any solutions to Az = b, there are an infinite
number. We pick our solution to minimize the functional
7(x) = J p(=(t))dt.

We can consider the Lagrangian
L(z, )y =

1 n
[ otande+ ox G~ (aua),
i=1

and the associated dual problem

max min{L(z, A)}.

D
AeR"zeX (D)



No. 5, Fall, 1994

At the solution & to (P), the derivative of L(, -) should
be zero, which implies

3(t) =

(¢ (E /\iai(t))
= (¢)71(ATH).

There are two immediate problems with this approach.
The first is the assumption that a solution & exists. For
example, consider the problem

1 1
: = > .
- {/; z(t)dt [) tz(t)dt =1,z > 0}

inf

It is shown in [3] that the optimal value for this problem is
not attained. Additional side conditions on ¢ are needed
to insure solutions exist. The solution is actually the
absolutely continuous part of a measure in C(2)*. Again,
see (3] for details.

The second problem is the assumption that the La-
grangian is differentiable. In the above example, the func-
tional f is 400 for every function z negative on a set of
positive measure. This implies that the Lagrangian is
400 on a dense subset of L!, the set of functions not
nonnegative a.e.; the Lagrangian is nowhere continuous,
much less differentiable.

One approach to circumvent the differentiability prob-
lem, is to pose the problem in L®(Q), or in C(R2), the
space of essentially bounded, or continuous, functions.
However, in these spaces, even with additional side qual-
ifications, we are not necessarily assured solutions to (P)
exist. In [3], there is an example of a problem where
Q C IR?, the moments are fourier coefficients, and the
entropy is Burg’s, yet no solutions exist. Another exam-
ple, Minerbo[10] poses the problem of tomographic recon-
struction in C(2) with the Boltzmann-Shannon entropy.
However, there the functions a; are characteristic func-
tions of strips across €2, and the solution is piecewise con-
stant, not continuous.

4. CONVEX ANALYSIS
A correct derivation of the form of solution is given in
detail in [3]. For brevity, we only state the theorem that
guarantees that the form of solution found in the above
faulty derivation, # = (¢')~1(AT }), is, in fact, correct.
First, we introduce the Fenchel conjugate of a function
¢ : IR — (—00,+00]:

é*(u) = sup {uv — ¢(v)}.
veER

In many cases, this can be computed explicitly, using or-
dinary calculus. We say ¢ possess regular growth if either
d = 00, 0r d < co and k£ > 0, where d = limy_, o ¢(u)/u
and k = limy14(d — v)(¢*) (v). The domain of a convex
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function is dom(¢) = {u
properif dom(¢) # 0.

Let : = infdom(¢) and & = supdom(¢). Our con-
straint qualification, (CQ), reads

: ¢(u) < +o0}. A function is

3z € L}(Q), such that AT =,
fZ)ER, 1<T<o0o ae.

We mention that in many cases, (CQ) in fact reduces to
feasibility, and trivially holds.
The dual problem for (P) is

sup {(b,,\) - / ¢-(AT,\(t))dt} . (D)
Q

Theorem 1 Suppose Q is a finite interval, yu is Lebesgue

measure, each ayp is locally Lipschitz (or in particular,

continvously differentiable), and ¢ is proper, strictly con-

vez with regular growth. Suppose (CQ) holds and

n
Ar € R" such that ZT;a;(t) <d Vte€l[ab], (1)

i=1

then the unique solution to (P) is given by

&(t) = (¢")’(Z Aiai(t)) (2)

where X is any solution to the dual problem (D).

This theorem generalizes to cover the case @ C IRP.
The results can be found in [3,4].

What Theorem 1 means in practice is that the form
of the maximum entropy solution can be found without
going through the (incorrect) derivation, by simply vali-
dating the easily checked conditions of Theorem 1.

Also, any solution to Az = b of the form in Eq. (2) is
automatically a solution to (P). Thus, finding solutions
to (P) is equivalent to solving the nonlinear system of
equations

((qS')’(AT/\),a.-) = b,‘, i= 1,...,n (3)
for A € IR", a finile dimensional system of equations. One
can then apply a standard nonlinear equation solver, like
Newton’s method, to this system, to find the optimal A.

It can be shown that in many cases, (¢')~! = (¢*),
and so the incorrectly derived solution agrees with the
solution given in the theorem.

Finally, notice that discretization is only needed to
compute the terms in Eq. (3), and in some cases, these
integrals can be computed exactly, see [9] for an example
in tomography. This is what we mean by not discretiz-
ing before necessary. By waiting to see what form the
dual problem takes, one can customize one’s integration
scheme to match the problem at hand.
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As part of the Mom&nt+ project here at the Centre for
Experimental and Constructive Mathematics (CECM) at
Simon Fraser University, we have implemented much of
the above theory in a setting that allows general entropies
and moment generating functions. There are several pub-
lications and more information available electronically via
our gopher server:

gopher gopher.cecm.sfu.ca
our anonymous ftp site,
ftp ftp.cecm.sfu.ca
and our World Wide Web server
http:\\wwe.cecm.sfu.ca
which can be accessed via www, lynx or xmosaic, for ex-
ample.
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BULLETIN BOARD

MEMBERSHIP RENEWAL

SIAM sent out membership renewals in late August. If
you cannot locate yours, you will have received a reminder
in October. We hope that you will renew promptly. Your
membership helps to support the products and services
provided by SIAM. (Vickie Kearn)

THE SIAG/OPT PRIZE

The SIAM Activity Group on Optimization
(SIAG/OPT) Prize, established in 1991, is awarded to
the author(s) of the most outstanding paper, as deter-
mined by the prize committee, on a topic in optimization
published in English in a peer-reviewed journal. The prize
will be awarded at the STAM Optimization Conference in
1996. The deadline for nominations will be announced in
1995.

Candidate papers must be published in English in a
peer-reviewed journal bearing a publication date within
the award period. They must contain significant research
contributions to the field of optimization, as commonly
defined in the mathematical literature, with direct or po-
tential applications.

A nomination must include:

1. a copy of the paper being nominated,

2. a description of the significance of the paper, the im-
portant questions that have been resolved and/or raised
in the paper, the applications of the work,

3. a general description of the contributions of the au-
thor(s) and how the nominated paper fits in.

Other supporting information may, at the option of the
nominator, be included.

A formal call for nominations will be issued in mid-
1995, but it’s not too early to begin preparing a case for
a nomination. (Tim Kelley)

SUMMER RESEARCH CONFERENCE
ON CG-RELATED METHODS

An AMS-IMS-SIAM Joint Summer Research Con-
ference on Linear and Nonlinear Conjugate Gradient-
Related Methods co-chaired by L. Adams (UW) and J.L.
Nazareth (WSU) will be held on the campus of the Uni-
versity of Washington in Seattle, Washington, USA from
Sunday, July 9, 1995 through Thursday, July 13, 1995.
The purpose of this meeting is to bring together re-
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searchers and practitioners from the linear and nonlinear
conjugate gradient (CG) communities for an exchange
of ideas and to foster communication. Invited speak-
ers for one-hour talks include A.R. Conn (IBM, Wat-
son), A. Greenbaum (NYU), T. Manteuffel (Colorado),
S. Mehrotra (Northwestern), J. Nocedal (Northwestern),
D. O’Leary (Maryland), M.A. Saunders (Stanford), D.P.
Young (Boeing).

The meeting will seek to maintain a balance between
formal presentations of research (a substantial number of
1/2 hour slots will be available to participants) and the
opportunity for informal and more spontaneous interac-
tion. There will be no parallel sessions.

Additional detail can be found in the Notices of the
American Mathematical Society, Vol. 41, No. 8, pp 1014-
1017, October, 1994, or obtained by sending e-mail to
Wayne Drady (wsd@math.ams.org) at AMS or one of the
co-chairs.

SELECTED UPCOMING ARTICLES
FOR SIAM J. OPTIMIZATION

Large-Scale, Nonlinearly Constrained Optimization on a
1024-Processor nCube J. H. Glick and J. B. Rosen
Evaluation of Large-Scale Optimization Problems on Vec-
tor and Parallel Architectures Breit M. Averick and Jorge
J. More

Serial and Parallel Multicategory Discrimination Krisiin
P. Bennelt and 0. L. Mangasarian

An Extension of the DQA Algorithm to Convex Stochas-
tic Programs Adam J. Berger, John M. Mulvey, and An-
drzej Ruszczynski

Problem Formulation for Multidisciplinary Optimization
FEvin J. Cramer, J. E. Dennis, Jr., Paul D. Frank, Robert
Michael Lewts, and Gregory R. Shubin

Coordination in Coarse-Grained Decomposition R.
DeLeone, R. R. Meyer, S. Kontogiorgis, A. Zakarian, and
G. Zakeri

Parallel Branch-and-Bound Algorithms for General
Mixed Integer Programming on the CM-5 Jonathan Eck-
stein

Parallel Variable Distribution M. C. Ferris and O. L.
Mangasarian

Parallel Factorization of Structured Matrices Arising in
Stochastic Programming FElizabeth R. Jessup, Dafeng
Yang, and Stavros A. Zenios

Structured Linear Least-Squares Problems in System
Identification and Separable Nonlinear Data Fitting
Linda Kaufman, Garrett S. Sylvester, and Margaret H.
Wright

Serial and Parallel Computation of Karush-Kuhn-Tucker
Points via Nonsmooth Equations Jong-Shi Pang
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A Stochastic Method for Constrained Global Optimiza-
tion Klaus Ritter and Slefan Schaffler

Infeasible-Interior-Point Primal-Dual Potential Reduc-
tion Algorithms for Linear Programming Shinji Mizuno,
Masakazu Kojima, and Michael J. Todd

A Fast Heuristic Method for Polynomial Moment Prob-
lems with Boltzmann-Shannon Entropy J. M. Borwein
and W. Z. Huang

Interior Point Methods in Semidefinite Programming
with Applications to Combinatorial Optimization Farid
Alizadeh

On the Primal-Dual Steepest Descent Algorithm for Ex-
tended Linear-Quadratic Programming Ciyou Zhu

Symmetric Quasidefinite Matrices Robert J. Vanderbei

An All-Inclusive Efficient Region of Updates for Least
Change Secant Methods Henry Wolkowicz and Qing Zhao

A Positive Algorithm for the Nonlinear Complementarity
Problem Renato D. C. Monteiro, Jong-Shi Pang, and Tao
Wang

A Practical Interior-Point Method for Convex Program-
ming Florian Jarre and Michael A. Saunders

An Optimal Positive Definite Update for Sparse Hessian
Matrices Roger Fletcher

Trust Region Algorithms for Solving Nonsmooth Equa-
tions Liqun Qi

Why a Pure Primal Newton Barrier Step may be Infeasi-
ble Margaret H. Wright

CONTRIBUTIONS TO THE V&N

The next issue (Spring, *95) will have as its theme Opti-
mizalion Algorithmica Esoterica, and will include essays
by Olvi Mangasarian (Wisconsin; on optimization and
machine learning) and Virginia Torczon (Rice; on pat-
tern search).

Articles contributed by SIAG/OPT members are al-
ways welcome and can take one of two forms:
a) Views: short, scholarly, N3 (Not Necessarily Noncon-
troversial) essay-type articles, say 2 to 4 pages long, on
any topic in optimization and its interfaces with the sci-
ences, engineering and education.
b) News: brief items for the Bulletin Board Section.

Our first preference is that a contribution take the form
of a LaTeX file sent by email to the editor at the address
given below. (If possible try it out in two-column format.)
However, other forms of input are also acceptable.

The Bulletin-Board deadline for the next issue is March
15, 1995.
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Optimization

Software Guide
Jorge J. Moré and Stephen J. Wright

1993
xii + 154 pages / Softcover
ISBN 0-89871-322-6
List Price $24.50
SIAM Member Price $19.60
Order Code FR14

to
ORDER

Use your credit card (AMEX, MasterCard,
and VISA):

Call toll free in USA: 800-447-SIAM
Outside USA call: 215-382-9800

Fax: 215-386-7999

E-mail: service@siam.org

Or send check or money order to:

SIAM, Dept. BKAG94, P.O. Box 7260
Philadelphia, PA 19101-7260

Payments may be made by wire transfer to
SIAM’s bank:

PNC Bank, 3535 Market Street,
Philadelphia, PA 19104; ABA Routing
#031000053; Account Name: Society
for Industrial and Applied
Mathematics; Account #509-704-5

Shipping and Handling

USA: Add $2.75 for the first book and
$.50 for each additional book.

Canada: Add $4.50 for the first book
and $1.50 for each additional book.
Outside USA/Canada: Add $4.50 per
book. All overseas delivery is via airmail.
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“Moré and Wright have produced a compact, well-researched guide providing
material and information that can be used by graduate students and researchers
familiar with optimization problems. ..."

— D.E. Bentil, University of Massachusetts at Amherst, Choice, June 1994.

“This is the book for the busy man or woman who is looking for a piece of
software without having the time to learn everything about mathematical
programming. . ..The book should be on the desk of everybody who has to solve
apractical optimization problem, e.g., in engineering sciences, operations
research, natural sciences.”

— Klaus Schittkowski, Mathematisches Institut, Universitaet Bayreuth,

January 1994.

Developments in optimization theory, including emphasis on large problems and
on interior-point methods for linear programming, have begun to appear in
production software, Here is a reference tool that includes discussions of these
areas and names software packages that incorporate the results of theoretical
research. After an introduction to the major problem areas in optimization and
an outline of the algorithms used to solve them, a data sheet is presented for
each of the 75 software packages and libraries in the authors’ survey. These
include information on the capabilities of the packages, how to obtain them, and
addresses for further information.

Standard optimization paradigms are addressed — linear, quadratic, and
nonlinear programming; network optimization; unconstrained and bound-
constrained optimization; least-squares problems; nonlinear equations; and
integer programming. The most practical algorithms for the major fields of
numerical optimization are outlined, and the software packages in which they are
implemented are described.

Contents

Preface; Part I: Overview of Algorithms. Chapter 1: Optimization Problems and Software;
Chapter 2: Unconstrained Optimization; Chapter 3: Nonlinear Least Squares; Chapter 4:
Nonlinear Equations; Chapter 5: Linear Programming; Chapter 6: Quadratic Programming;
Chapter 7: Bound-Constrained Optimization; Chapter 8: Constrained Optimization;
Chapter 9: Network Optimization; Chapter 10: Integer Programming; Chapter 11.
Miscellaneous Optimization Problems; Part II: Software Packages. AMPL; BQPD; BT; BTN;
CNM; CONOPT; CONSOL-OPTCAD; CPLEX; C-WHIZ; DFNLP; DOC; DOT; FortLP;
FSQP; GAMS; GAUSS; GENESIS; GENOS; GINO; GRG2; HOMPACK; IMSL Fortran and C
Library; LAMPS; LANCELOT; LBFGS; LINDO; LINGO; LNOS; LPsolver; LSGRG2;
LSNNO; LSSOL; M1QN2 and M1QN3; MATLAB; MINOS; MINPACK-1; MIPIII;
MODULOPT; NAG Clibrary; NAG Fortran Library; NETFLOW; NETSOLVE; NITSOL;
NLPE; NLPQL; NLPQLB; NLSFIT; NLSSOL; NLPSPR; NPSOL; OB1; ODRPACK; OPSYC;
OptiA; OPTIMA Library; OPTPACK; OSL; PC-PROG; PITCON; PORT 3; PROC NLP;
QO1SUBS; QAPP; QPOPT; SPEAKEASY; SQP; TENMIN; TENSOLVE; TN/TNBG;
TNPACK; UNCMIN; VE08; VE10; VIG and VIMDA; What’s Best!; Appendix: Internet
Software; References.
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Nonlinear
Programming

Olvi L. Mangasarian

November 1994
xv + 220 pages / Softcover
ISBN 0-89876-341-2

List Price $28.50
SIAM Member Price $22.80
Order Code CL10
to
ORDER

Use your credit card (AMEX, MasterCard, and
VISA): Call toll free in USA: 800-447-SIAM
Qutside USA call: 215-382-9800

Fax: 215-386-7999; E-mail: service@siam.org
Or send check or money order to:

SIAM, Dept. BKAG9%4, P.O. Box 7260
Philadelphia, PA 19101-7260

Payments may be made by wire transfer to
SIAM'’s bank: PNC Bank, 3535 Market Street,
Philadelphia, PA 19104

ABA Routing #031000053; Account Name:
Society for Industrial and Applied
Mathematics; Account #8550970454
Shipping and Handling

USA: Add $2.75 for the first book and $.50
for each additional book.

Canada: Add $4.50 for the first book and
$1.30 for each additional book.

Outside USA/Canada: Add $4.50 per book.
All overseas delivery is via airmail.
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Undergraduates with an advanced
calculus background and graduate
students in computer science,
industrial engineering, operations
research, electrical engineering,
economics, business, mathematics,
and civil and mechanical
engineering will find this book of
great use. It will also be of
interest to researchers in oil,
investment, chemical, and software
companies, as well as banks and
airlines.
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This reprint of the 1969 book of the same name is a concise, rigorous, yet
accessible, account of the fundamentals of constrained optimization theory.
Many problems arising in diverse fields such as machine learning,
medicine, chemical engineering, structural design, and airline scheduling
can be reduced to a constrained optimization problem. This book provides
readers with the fundamentals needed to study and solve such problems.

Beginning with a chapter on linear inequalities and theorems of the
alternative, basics of convex sets and separation theorems are then derived
based on these theorems. This is followed by a chapter on convex
functions that includes theorems of the alternative for such functions.
These results are used in obtaining the saddlepoint optimality conditions of
nonlinear programming without differentiability assumptions. Properties of
differentiable convex functions are derived and then used in two key
chapters of the book, one on optimality conditions for differentiable
nonlinear programs and one on duality in nonlinear programming.
Generalizations of convex functions to pseudoconvex and quasiconvex
functions are given and then used to obtain generalized optimality
conditions and duality results in the presence of nonlinear equality
constraints.

The book has four useful self-contained appendices on vectors and
matrices, topological properties of n-dimensional real space, continuity and
minimization, and differentiable functions.

Contents

Preface to the Classic Edition; Preface; Chapter 1: The Nonlinear Programming
Problem, Preliminary Concepts, and Notation; Chapter 2: Linear Inequalities and
Theorems of the Alternative; Chapter 3: Convex Sets in R'; Chapter 4: Convex and
Concave Functions; Chapter 5: Saddlepoint Optimality Criteria of Nonlinear
Programming Without Differentiability; Chapter 6: Differentiable Convex and
Concave Functions; Chapter 7: Optimality Criteria in Nonlinear Programming with
Differentiability; Chapter 8: Duality in Nonlinear Programming; Chapter 9:
Generalizations of Convex Functions: Quasiconvex, Strictly Quasiconvex, and
Pseudoconvex Functions; Chapter 10: Optimality and Duality for Generalized
Convex and Concave Functions; Chapter 11: Optimality and Duality in the Presence
of Nonlinear Equality Constraints; Appendix A: Vectors and Matrices; Appendix B:
Resume of Some Topological Properties of R, Appendix C: Continuous and
Semicontinuous Functions, Minima and Infima; Appendix D: Differentiable
Functions, Mean-value and Implicit Function Theorems; Bibliography; Name Index;
Subject Index.

About the Author
Olvi L. Mangasarian is the John von Neuman Professor of Mathematics and
Computer Sciences at the University of Wisconsin, Madison.




